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Abstract: Interface  engineering  has  played  an  increasingly  essential  role  in  the  development  of  perovskite  solar  cells  (PSCs).
Herein,  we  adopted  an  effective  and  simple  one-step  interface  passivation  method  on  a  FA-based  perovskite  to  fabricate  effi-
cient  and  stable  planar  PSCs.  The  surface  defects  are  reduced  by  the  perovskite  interface  passivation  layer  incorporated
between the hole transport  and perovskite  absorber  layers,  and then non-radiative recombination is  suppressed while  interfa-
cial  carrier  extraction  is  enhanced.  The  passivated  planar  PSCs  demonstrates  20.83%  power  conversion  efficiency  (PCE),  which
is caused by the simultaneous enhancement of the fill  factor and open-circuit voltage. In addition, the device also shows great
ambient and thermal stability. It retains 94% of its original PCE after 1000 h under ambient air without encapsulation as well as
90% of its  initial  efficiency after  400 h under continuous heating at  65 °C with encapsulation.  This  research provides a strategy
for the development of efficient and stable PSCs.
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1.  Introduction

Organic–inorganic  halide  perovskite  solar  cells  (PSCs)
have  been  rapid  developed  in  the  past  decade  due  to  their
unique  properties,  such  as  high  carrier  mobility,  low-cost  fa-
brication,  adjustable  band-gap,  simple  solution-based  pro-
cesses,  and  long  carrier  diffusion  length,  etc.[1−6].  The  pow-
er  conversion  efficiency  (PCE)  of  PSCs  is  rapidly  improved
from 3.8% to a certified 25.2%, and they are becoming a very
appealing candidate for new generation photovoltaic materi-
als[7−10].  FA-based absorbers are the most widely used materi-
als in PSCs with enhanced thermal stability and less likely mois-
ture-induced  decomposition[11−13].  Crystal  defects  are  harm-
ful  to  devices'  stability  and  performance  due  to  the  inducing
of charge recombination and moisture permeation[14−16].  Mo-
st crystal defects are located at the grain boundaries and inter-
face.  For  actually  commercial  deployment,  high  performance
and stability are equally important. Toward this end, many kin-
ds of  methods have been taken into consideration[17−23].  Am-
ong them, surface modification methods have been adopted.

Interface  passivation  is  increasingly  essential  for  enhan-
cing  the  performance  of  PSCs.  For  example,  You et  al.  repor-
ted that excess PbI2 on the surface or grain boundaries of per-

ovskite  films can suppress  charge recombination[24].  Saliba et
al.  used  polymeric  interlayer  between  the  perovskite  and
hole transport interface, which is helpful to passivate the per-
ovskite and then reduce recombination. A PCE of 20.35% was
obtained  with  the  quite  significant  improvement  in  stability.
The devices maintain about 90% of its original PCE for 1000 h
under continuous illumination[25].  Han et al. reported the pas-
sivation of a chlorinated graphene oxide (Cl-GO) layer on per-
ovskite films for reducing surface defects. The cell with the het-
erostructure  maintained  90%  PCE  value  at  the  maximum
power  point  after  1000  h[26].  Recently,  You et  al.  reported  a
method  of  perovskite  films  surface  defect  passivation by  us-
ing  an  organic  halide  salt  (phenethylammonium  iodide)  and
a certificated PCE of 23.32% was achieved [9].

In  this  work,  in  order  to  reduce  the  interface  iodide  defi-
ciency  for  FA-based  PSCs,  we  adopted  an  interface  passiva-
tion method by using MABr reacted with excess  PbI2 to  form
a perovskite passivation layer between the hole transport lay-
er (HTL) and perovskite absorber interface. The result demon-
strates a decrease in surface defects and non-radiative recom-
bination, and an increase in carrier extraction. So that, we ob-
tain an enhanced PCE of 20.83%, which is superior to the con-
trol device with a PCE of 18.39%. In addition, the device indic-
ates outstanding stability of humidity and temperature.

2.  Experimental section

2.1.  Materials

Isopropyl  alcohol  (IPA),  N,N-dimethylformamide  (DMF)

  
Correspondence to: P Y Wang, pywang@nankai.edu.cn; X D Zhang,

xdzhang@nankai.edu.cn
Received 24 FEBRUARY 2020; Revised 27 MARCH 2020.

©2020 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2020) 41, 052202

doi: 10.1088/1674-4926/41/5/052202

 

 
 

http://dx.doi.org/10.1088/1674-4926/41/5/052202


and  dimethylsulfoxide  (DMSO)  were  obtained  from  Sigma
Aldrich.  SnO2 precursor  was  purchased  from  Alfa  Aesar.  Oth-
er  materials  were obtained from Xi’an Polymer Light  Techno-
logy Corp.

2.2.  Film and device fabrication

First,  the  ITO glass  substrates  were  immersed in  industri-
al  cleaning agents,  acetone and isopropyl  alcohol,  for  40 min
each for ultrasonic cleaning. Then they were put on the ultravi-
olet  ozone  machine  platform  and  removed  after  20  min  of
ozone  treatment.  The  prepared  tin  dioxide  solution  (15%
strength tin dioxide solution :  ammonia = 1 :  3)  was dropped
on the ITO, which was spin-coated at a speed of 4000 rpm for
30 s, and then placed on a heating plate at 150 °C for 30 min.
Ozone  treatment  was  used  for  another  20  min.  Dropped  the
configured  FAMACs  perovskite  precursor  solution  containing
FAI  (1.1  M),  PbI2 (1.2  M),  MABr  (0.05  M),  CsI  (0.10  M),  MACl
(0.05 M)  in  mixture DMF :  DMSO = 2 :  3  (v/v)  on the tin  diox-
ide layer,  spin-coated at  1000 rpm for  10 s,  then at  5000 rpm
for  50  s  during  which  in  the  last  20  s  100 μL  of  anti-solvent
chlorobenzene was added. Put it  directly on a 130 °C heating
plate  for  30  min.  For  the  surface  passivation  treatment,  coo-
led  down  the  films  to  room  temperature  and  dropped  60 μL
of  2  mg/mL  isopropyl  alcohol  solution  containing  MABr  on
the  surface  of  the  perovskite  layer,  and  spin-coated  it  at  a
speed of 4000 rpm for 30 s,  then placed it on a 90 °C heating
plate  for  5  min.  Next,  dropped  35 μL  Spiro-OMeTAD  on  the
surface  of  the  passivation  layer  or  perovskite  layer,  and  then
spin-coated at a speed of 4000 rpm for 30 s. At last, a layer of
80-nm gold top electrode was deposited by thermal evapora-

tion.

2.3.  Film and device characterization

The  XRD  patterns  were  obtained  by  Rigaku  MiniFlex  600
using Kα radiation (λ = 1.5406 Å) to measure the crystal struc-
ture.  In  order  to  obtain  the  surface  structure  of  the  per-
ovskite  film,  the  SEM  image  was  tested  by  FEI  NanoSEM650.
For  getting  the  information  of  carrier  lifetime,  PL  and  TRPL
tests were performed by fluorescence spectrophotometer (Ed-
inburgh  FS5).  Current  density–voltage  (J–V)  characteristics
were  obtained  at  the  room  temperature  under  AM  1.5G  illu-
mination  by  Keithley  2400  through  a  mask  with  an  area  of
0.089  cm2.  The  dark  density–voltage  (J–V)  characteristics
were obtained under dark condition by Keithley 2400. The sur-
face  morphology  of  perovskite  film  was  obtained  by  Nano-
Navi-SPA400.  The  EQE  spectra  in  ambient  air  were  obtained
by QEX10 instrument at room temperature.

3.  Results and discussion

The  formation  process  of  perovskite  passivation  film  is
shown  in Fig.  1.  Proper  amount  of  PbI2 in  grain  bounda-
ries  could  passivate  the  defects  and  deliver  higher
efficiency[24, 27].  While  the  excessive  PbI2 without  light  re-
sponse,  used  for  reacting  by  MABr  to  form  passivation  layer,
the layer  could passivate the defects  and also being with en-
hanced light response.

The  scanning  electron  microscopy  (SEM)  images  of  per-
ovskite  films  with  and  without  modification  are  shown  in
Figs.  2(a) and 2(b),  respectively.  It  can  be  deduced  that  the
surface  of  perovskite  film  with  modification  is  flatter.  From
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Fig. 1. (Color online) Schematic diagram of the formation of passivation layer.
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Fig. 2. (Color online) SEM and AFM images of (a, c) control and (b, d) passivated perovskite films on ITO/SnO2 substrates. (e) Device structure of
the passivated perovskite solar cells. (f) XRD patterns of passivated and control perovskite films.
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the  atom  force  microscopy  (AFM)  measurement  shown  in
Figs. 2(c) and 2(d), it can be regarded that the passivation lay-
er  results  in  smoother  perovskite  films.  Root  mean  square
(RMS)  of  the  passivated  and  control  films  are  17.04  and
17.89 nm, respectively. Fig. 2(e) shows the device structure dia-
gram of the passivated perovskite solar cells. The results of X-
ray  diffraction  (XRD)  are  shown  in Fig.  2(f).  The  diffraction
peak  of  PbI2 (12.6°)  decreases  sharply  after  spin-coating  of
the MABr, which indicats that a new perovskite is formed due
to  the  reaction  of  excessive  PbI2 with  MABr[24, 28].  Too  much
PbI2 is  detrimental  to  the  hysteresis  and  stability of  the
device, which can also be reconfirmed in this work. Table 1 is
the  result  of  one  batch  of  experiments,  the  best  PCE  is  the
device with concentration of 2 mg/mL MABr.

Fig.  3(a) shows  the I–V relationship  of  the  devices  with
and  without  I/P  interface  passivation.  The  efficiency  in-
creased  from  18.39%  to  19.97%.  Current  density  did  not
change greatly, but the Voc and the FF increased from 1.10 to
1.14  eV  and  from  73.98%  to  77.03%,  respectively. Fig.  3(b)
shows  the  external  quantum  efficiency  (EQE)  spectra  of  the
passivated and original devices. It can be found that the integ-
rated  current  densities  of  control  and  passivated  perovskite
solar  cell  are  22.03  and  21.80  mA/cm2,  respectively,  which
shows the same trend with the J–V results.

Ultraviolet  photoelectron  spectroscopy  (UPS)  measure-
ments  of  glass/ITO/perovskite  and  glass/ITO/perovskite/pas-
sivation  substrates  were  used  to  further  study  the  energy
band  structure[29, 30].  The  data  of  the  control  and  the  passiv-
ated  perovskite  films  are  shown  in Fig.  4(a).  Helium  Ⅰ ( hν =
21.22  eV)  spectra  of  secondary  electron  cutoff  band  of  the
control  and  passivated  perovskite  films  are  17.86  and
18.25  eV,  respectively  (Fig.  4(b)).  The  work  functions  (WS)  of
the  control  and  passivated  perovskite  films  are  3.36  and

2.97  eV,  respectively.  The  valence  bands  related  to  the  Fermi
level are 2.40 and 2.67 eV, respectively (Fig. 4(c)). By the calcu-
lation  formula EV = WS +  VBM,  we  can  get  the  calculated
valence  bands  of  the  control  and  passivated  films  are  5.76
and  5.64  eV,  respectively[31, 32].  After  passivation,  the  valence
band shifted by 0.12 eV relative to the control  sample.  Based
on  these  measurements,  we  plotted  the  energy  levels  of
these  two  thin  films,  which  are  shown  in Fig.  4(d).  The  en-
ergy  level  for  other  films  are  obtained  from  previous  pub-
lished  references[33].  It  can  be  clearly  seen  that  the  passiv-
ated  film  has  a  better  energy  level  matching  with  the  lowest
unoccupied  molecular  orbit  (LUMO)  level  of  Spiro  than  that
of  the  control  film,  which  can  improve  the  carrier  extraction
capability. Fig.  4(e) shows  the  steady-state  photolumines-
cence (PL) with the device structures of ITO/perovskite/passiva-
tion  layer/spiro  and  ITO/perovskite/  spiro,  respectively.  As  is
well known, the lower PL intensity means better charge separa-
tion from the light absorbing layer to the carrier transport lay-
er.  By  introducing  passivation  layer  on  the  PVK  surface,  the
PL intensity can be significantly reduced, which indicates that
surface  passivation  improves  the  hole  extraction[34, 35].  This
can  also  be  confirmed  by  time-resolved  photoluminescence
(TRPL)  in Fig.  4(f).  The  TRPL  decay  curves  of  ITO/perovskite/
passivation  layer/spiro  and  ITO/perovskite/spiro  were  fitted
with the following biexponential rate law[36]. 

Y = Aexp (−t/τ) + Aexp (−t/τ) + y.

Here, τ1 and τ2 are the fast  and slow recombination lifetimes,
and A1 and A2 are the relative amplitudes. The τ1 value of the
ITO/perovskite/passivation  layer/spiro  is  smaller  than  that  of
the  ITO/perovskite/spiro,  which  indicates  that  the  interface
has  fewer  defects.  The  detailed  results  are  shown  in Table  2.
This conclusion is also consistent with UPS and PL, and shows
the  ultimately  improvement  of  the  electrical  performance  of
PSCs.

In  order  to  better  evaluate  the  trap  density  of  both  per-
ovskite films, space-charge-limited current (SCLC) was conduc-

Table 1.   Summary of the device performance with different concentra-
tions of MABr treatment.

MABr concentration JSC (mA/cm2) VOC (V) FF (%) Eff (%)

Control 22.60 1.10 73.98 18.39
1 mg/mL 22.61 1.10 77.01 19.15
2 mg/mL 22.75 1.14 77.03 19.97
3 mg/mL 22.53 1.13 76.47 19.46
4 mg/mL 21.90 1.10 74.08 17.84
5 mg/mL 21.98 1.14 70.02 17.54

Table 2.   Summary of fitted results of TRPL of the passivated and con-
trol devices.

Sample τ1 (ns) τ2 (ns) τ1 (%) τ2 (%) A1 A2

Control 13 182 22.27 77.73 620.89 123.49
Passivation 10 190 21.30 78.70 602.58 124.06
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Fig. 3. (Color online) (a) J–V curves of the control and passivated perovskite solar cells. (b) External quantum efficiency (EQE) spectra for the passiv-
ated and control devices.
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ted  under  dark  conditions  with  the  glass/ITO/perovskite/Au
(Figs.  5(a) and 5(b))  device  structure.  The  calculation  formula
of ntrap can be described by[37, 38]:
 

VTEL = entd
/εε,

where VTFL is  the  trap-filled  limit  (TFL)  voltage, e is  the  elec-
tric charge, d is the thickness of the perovskite layer, ε0 is  the
vacuum permittivity, and ε is the dielectric constant of the per-
ovskite  layer.  The  calculated  trap  state  densities  are  1.51  ×
1016 and 1.38 × 1016 cm–3 for  the control  and passivated per-
ovskite,  respectively[39].  It  is  obvious  that  the  passivated  per-
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Fig. 4. (Color online) (a) Spectra of ultraviolet photoelectron spectroscopy (UPS). (b) Secondary electron cutoff and (c) valence band region near
EF of the perovskite film without (control) and with MABr (2 mg/mL) deposited on ITO substrate. (d) The energy level diagram of PSCs. (e) Steady-
state photoluminescence (PL) and (f) time-resolved PL (TRPL) spectra of the passivated and control perovskite film.
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Fig. 5. (Color online) I−V curves with the device structure of ITO/perovskite/Au, where the perovskite (a) without (control) and (b) with the passiva-
tion measured in the dark. (c) Steady-state photoluminescence (PL) and (d) time-resolved PL (TRPL) spectra of the passivated and control per-
ovskite film. (e) The dark I−V characteristics of the perovskite devices with and without the MABr.
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ovskite  film  has  lower ntrap value  which  indicates  the  re-
duced  surface  defects. Figs.  5(c) and 5(d) are  the  PL  intensity
and  lifetimes  of  the  control  and  passivated  perovskite  films
with  the  glass/perovskite  structure,  respectively.  The results
show  that  the  PL  peak  without  passivation  layer  is 780  nm,
while  the  peak  of  passivated  perovskite  is  770  nm.  The  blue
shift  of  emission  peak  position  also  confirms  the  reaction  of
MABr  and  PbI2.  In  addition,  the  PL  peaks  intensity  of  passiv-
ated perovskite film is higher, indicating fewer defects. There-

fore,  the  addition  of  passivated  film  significantly  suppresses
the  non-radiative  recombination,  which  is  the  reason  for  the
improved Voc.  This  result  is  also consistent  with PL and SCLC.
Moreover,  in order to evaluate the effect  of  the modified lay-
er  on  the  photovoltaic  performance,  a  dark J−V curves  were
conducted, as shown in Fig. 5(e). The modified layer with bet-
ter  band alignment  leads  to  enhanced electron injection and
decreased leakage current density[40].

Eighty samples with or without passivation layer were pre-
pared in different batches,  and the average values of  PCE are
shown  in Fig.  6(a),  respectively.  The  average  PCE  of  con-
trolled  sample  is  about  18.40%,  while  passivated  devices  is
about  20.00%. Fig.  6(b) presents  the J−V curves  with  forward
and reverse scanning directions of champion device with pas-
sivated  perovskite  solar  cell.  The  best-performing  device
achieves  a  PCE  of  20.83%  from  forward  scan  with  a Voc of
1.14 V, Jsc of  23.28 mA/cm2 and FF of  78.83%. Fig.  6(c) shows
the  EQE  curve  of  PSCs,  as  we  can  calculate  that  the  integ-
rated Jsc value is 22.34 mA/cm2.  In addition, the current dens-
ity  is  measured  at  a  fixed  maximum  voltage  (0.97  V)  and  a
steady power output (SPO) for 300 s, as shown in Fig. 6(d).

The  performance  of  passivated  PSCs  was  also  evaluated
from  the  perspective  of  device  stability,  humidity  and
thermal  stability  of  the  device  were  carried  out. Fig.  7(a) is
the stability of devices under humidity (20%–30%) without en-
capsulation.  After  1000  hours,  the  passivated  device  could
maintain 94% of its initial  efficiency (from 19.62% to 18.48%).
In  contrast,  the  control  device  only  maintains  70%  of  its  ini-
tial  efficiency  (from  18.30%  to  12.91%).  We  also  examine  the
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Fig.  6.  (Color  online) (a)  Histogram distribution of  the PCE for  devices  with control  (40 cells)  and passivated perovskite  films (40 cells).  (b) J−V
curves and (c)  EQE spectra with integrated JSC of  the best  passivated perovskite devices.  (d)  Current density  measured for  300 s  at  the steady
power output (SPO) with a fixed maximum voltage (0.97 V).
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Fig. 7. (Color online) (a) PCEs evolution of devices in ambient air with
the room temperature of 25–30 °C, and the humidity of 20%–30%. (b)
Devices kept at 65 °C in ambient air with encapsulation for 400 h.
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thermal  stability  of  both devices  under  ambient  air  with enc-
apsulation  (65  °C),  as  shown  in Fig.  7(b).  After  400  hours,  the
passivated device maintains 90% of its initial efficiency, which
means  that  the  passivated  devices  have  better  stability  un-
der continuous heating at 65 °C.

We  also  performed  XRD  test  for  control  and  passivated
perovskite  films  in  humidity  stability  test.  As  we  can  see  in
Fig. 8, the yellow phase perovskite peaks appear earlier in the
control  group,  which  indirectly  reflects  that  the  passivation
layer  could  effectively  prevent  the  water  in  ambient  air  from
contacting  the  perovskite  absorption  layer,  thus  reduce  the
influence  of  water  on  the  perovskite  and  promote  the water
stability of the PSCs.

Stability  is  the  most  important  key  characteristic  for  per-
ovskite  solar  cells.  This  research shows that  the  device  stabil-
ity  after  passivation  has  been  improved.  There  are  two  pos-
sible  reasons.  First  of  all,  excessive  PbI2 is  detrimental  to
device  stability[28].  The  spin-coated  MABr  reacts  with  excess-
ive  PbI2,  and then the  passivation  layer  is  formed to  improve
the  stability  of  the  device.  Furthermore,  as  previously  men-
tioned,  the  passivated  films  with  lower  trap  density  are  less
likely  to lead to trap-mediated decomposition.  Therefore,  the
device with passivated layer improves the stability.

4.  Conclusion

To  promote  the  electrical  properties  of  PSCs,  we  intro-
duced  a  passivation  layer  between  hole  transport  and  per-
ovskite  absorber  layer.  Through  the  UPS  measurement,  we
found  that  the  energy  level  after  passivation  is  more
matched.  The  SCLC  and  TRPL  results  show  that  the  passiva-
tion layer can effectively reduce surface defects and non-radi-
ative  recombination,  while  increase  carrier  extraction.  Ulti-
mately,  we  obtained  a  champion  device  with  efficiency  of
20.83%.  This  method  also  provides  enhanced  humidity  and
thermal  stability.  As  a  result,  the  device  retains  about  94% of
its initial PCE after 1000 h under ambient air without encapsu-
lation.  We  believe  that  the  surface  modification  strategy  will
help researchers to achieve efficient and stable PSCs.
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